HIGH PERFORMANCE INFRARED/TERAHETZ DETECTORS BASED ON PIEZOELECTRIC NANO PLATE RESONATORS

PI: Matteo Rinaldi

Northeastern University, Boston, Massachusetts, USA

Overview and Motivations

Our research focuses on the design, fabrication and characterization of high performance, miniaturized and low power uncooled MEMS/NEMS resonant infrared detectors, which can potentially revolutionize the field of IR spectroscopy and multi-spectral imaging systems.

The unique thermal detection capabilities of AIN nanoplate resonators make it excellent candidate for high performance infrared detectors:

Thermal Detector Metrics	Enabling features	Performance
Sensitivity	High TCF and excellent thermal isolation from a heat sink ⇒ very low thermal conductance	10s ppm/nW
Time Constant	Extremely low-mass device ⇒ very low heat capacity	μ s - ms
Noise Performance	Demonstrated very low Phase Noise performance	∆f _{noise} ≈ppb

Miniaturized, fast and high resolution THz spectroscopy AlN NPR-TD with integrated metamaterial THz absorber

- Spectrally selective IR detection
- NEP ~ pW/Hz^{1/2}
- NETD ~ mK
- Thermal time constant < 1ms
- Low power CMOS readout

Ideal candidate for the implementation of high resolution, ultra-fast, miniaturized and low power infrared/THz spectroscopy systems for standoff detection and identification of trace chemical residues

Spectrally selective IR/THz detectors

- ➤ Ultra-thin (600 nm thick) nanoplasmonic piezoelectric metamaterial to form the resonant body of the NEMS structure
- High IR absorption of 80% at lithographically defined wavelength in the LWIR range
- High figure of merit AIN piezoelectric metamaterial nano-plate resonator: $FOM = k_t^2 \cdot Q > 10$
- High sensitivity (AIN nano-plate resonant technology):
- extracted responsivity of 500 Hz/ µW
- Fast device response (overall reduced device volume):
- measured thermal time constant of 440 μs
- Ultra-high resolution (low noise performance):
 - Noise Equivalent Power (*NEP*) of ~2.9 $nW/Hz^{1/2}$

2D material-coupled NEMS IR detectors

